338. Counting Bits
Given a non negative integer number num. For every numbers i in the range 0 ≤ i ≤ num calculate the number of 1's in their binary representation and return them as an array.
Example:
Fornum = 5
you should return [0,1,1,2,1,2]
. Follow up:
- It is very easy to come up with a solution with run time O(n*sizeof(integer)). But can you do it in linear time O(n) /possibly in a single pass?
- Space complexity should be O(n).
- Can you do it like a boss? Do it without using any builtin function like __builtin_popcount in c++ or in any other language
-
class Solution {public: vector countBits(int num) { vector count_v(num+1,0); for(int i = 1; i <= num;i++) { int x = i; int count=0; while(x) { if((x & 1)==1) count++; x >>= 1; } count_v[i] = count; } return count_v; }};
注意:1.计算二进制中1的个数,难点在于时间复杂度。有三种基本求二进制1个数的方法:
- (1)定理求解:取余数的方法,最慢。
- (2)基本法(雾):值和1进行&操作,然后>>算术右移,仍然有两个循环。(即为本道题我的解法)
- (3)快速法:n和n-1进行&操作,可以消去二进制最右的1,仍然有两个循环。(在191题中的解法)
-
参考:http://www.cnblogs.com/graphics/archive/2010/06/21/1752421.html